
The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

Introduction to Truss Structures Optimization with Python

Ernesto Aranda José Carlos Bellido
e-mail ernesto.aranda@uclm.es josecarlos.bellido@uclm.es

Departmento de Matemáticas
Universidad de Castilla - La Mancha

Spain

Abstract

In this note we introduce the classical problem of optimizing a truss structure in a pedagogical
fashion. The truss will consist in a number of nodes (in our context two-dimensional points) and
connections between those points (in our context elastic bars). Subject to certain supporting and
loads conditions on the structure, our aim is to design the stiffest structure among those whose
volume do not exceed a given tolerance. The design variables are the cross section areas of the
bars connecting the different nodes of the structure. We introduce this nonlinear optimization
problem, go a bit into its mathematical analysis, and propose a basic numerical algorithm for
getting optimal solutions that is implemented in Python.

1 Introduction
In order to set the problem up we consider a set of fixed two-dimensional points, that we will call
nodes, and a number of connections between those points. We will assume that those connections are
elastic bars. The resulting mechanical structure is called a truss. This structure can be supported in a
variety of ways, so that the displacements for some of the nodes may be restricted, and the rest of the
nodes are free to displace in any direction. Further, loads may be considered to act on certain nodes
of the structures. See Figure 1a.

Our aim is to design the best possible structure by choosing the cross section areas of the truss
members. The cross section area of a elastic bar is a structural thickness nature variable, so that this
is a structural optimization problem for the truss structure. In the literature this problem is included
into the category of sizing optimization problems, since we are optimizing the size of the structural
elements of the truss; however, if we allow those areas to take the value zero in the optimization
problem, then the problem falls into the category of topology optimization problems, since when that
happens, bars are removed form the structure, changing the connectivity between nodes and conse-
quently the topology of the truss structure (see Figure 1b). Criteria to be optimized and constraints
for this problem could be of any kind with physical meaning, and among the most used because of
their interest in engineering is to maximize the stiffness of the structure subject to a constraint on the
maximal volume of the truss. This is the problem that we consider in this paper. Having this in mind

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

P

(a) Initial truss

P

(b) Optimized truss

Figure 1: Example of a truss structure before and after optimization

the result for the optimized structure in Figure 1 is mechanically intuitive, since separating the bars
into the structure as much as possible increases its inertia as much as possible, thus making the truss
stiffest. Of course the permitted maximal volume is small enough for getting a structure with only
two bars as optimized design.

The history of truss optimization problems is long and goes back to 1904, when A. Michell pub-
lished its pioneering work [7], and was able to obtained optimality conditions for minimal weight
topologies in geometrically simple cases under punctual load conditions. In particular, in those op-
timal structures all the bars work under the same stress, either under tension or compression, and
globally the truss is an orthogonal curves system. In Figure 2 two examples of Michell type structures
are shown. There was a lack of interest on the subject until the sixties when the use of computers
allowed to attack more realistic problems. There has been a great deal of work on the subject since
then and we can affirm that it is now a very well developed subject. There are many references on it,
and we just cite [3, 2, 8] as good accounts on the subject. [1] is a general basic reference on topology
optimization.

PP

Figure 2: Michell type structures: simply supported beam-type truss (left) and cantilever-type truss
(right)

19

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

In this introductory note on the subject we focus on the model problem of designing the stiffest
truss structure such that its volume is below a prescribed value. The plan of the paper is the following:
in section 2 we introduced the problem, going into the mechanical modeling and the mathematical
optimization problem. The contents of this section are based on [2, Ch.5]. Section 3 is devoted to the
computational implementation in Python of an algorithm for solving the problem. Some examples
are shown in section 4 and codes are shown in section 5.

Finally, we remark that we work on the planar two-dimensional situation for simplicity in the
exposition, but all the analysis can be extended without much effort to the three-dimensional case.

2 The optimization problem
In this section we obtain the optimization problem we are interested on. We assume elastic linear
behavior for the truss bars. For the sake of simplicity, we will assume that our truss is made of
bars of the same material with constant Young modulus E, although different materials bars can be
considered in the algorithm in section 3.

If we collect together the cross section areas of all the bars to be optimized in the truss in a vector
x = (x1, x2, . . . , xn) ∈ Rn, (we will use boldface characters for vector and matrices) n being the
number of such bars, then our optimization problem has the form

Minimize
x∈Uad

C(x) = FTU (1)

subject to
K(x)U = F (2)

and the volume constraint
n∑

j=1

ljxj ≤ Vmax. (3)

The feasible set for the optimization problem, Uad, is given by

Uad =
{
x ∈ Rn : xmin

j ≤ xj ≤ xmax
j , j = 1, . . . , n

}
,

where xmin
j , xmax

j are respectively the maximal and minimal cross section areas allowed for the j-th
bar. We call m the number of free nodes of the truss, that is to say, nodes whose displacement is
not constrained by the boundary conditions. Then U ∈ R2m stands for the displacement vector and
F ∈ R2m stands for the vector of loads applied on the nodes of the structure. Recall that our model
is two-dimensional, thus if the number of free nodes is m then the number of components of the
displacement and load vector must be 2m. The cost functional C(x) = FTU, is the compliance,
or the work made by the load to deform the structure. Minimizing the compliance is equivalent to
maximizing the stiffness of the truss, since the smallest the compliance is, the stiffest the truss is. The
equilibrium equation of the system is given by the linear system of equations (2), where K(x) stands
for the stiffness matrix of the structure. In section 2.1 we show how the stiffness matrix is obtained
and why it depends on the cross section areas of the bars of the truss. Finally, in the volume constraint
(3), lj stands for the length of the j-th bar, so that its volume is ljxj , and the total truss volume is

n∑
j=1

ljxj.

20

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

l, x, E

θe

u1x

u1y

u2x

u2y

1

2

Figure 3: Single bar with notation

Vmax in (3) is the maximal volume allowed for the structure.
In practice xmin

j is a very small but strictly positive value, so that we assume that if this value
is reached in the optimized design, then j-th bar is removed from the truss. This makes perfect
mechanical sense since the stiffness contribution of such a bar to the truss will be nonsignificant.
We do not consider xmin

j = 0 because the stiffness matrix K(x) might become singular during the
optimization process.

2.1 Equilibrium equations
In this section we obtain the truss equilibrium equations (2). First of all we focus on obtaining the
equilibrium equation of a single homogeneous bar with constant cross section area. Let us take as a
model the bar of Figure 3. Here, E, x and l stand for, respectively, the Young modulus, the crosssection area and the length of the bar. θ is the angle of the bar with the horizontal, and e is the unitary
director vector of the bar, namely

e =

(
cos θ
sin θ

)
. (4)

The vectors

u1 =

(
u1x

u1y

)
, u2 =

(
u2x

u2y

)
stand for the displacement vectors on the bar extremes, or nodes. It will be useful to collect these two
vectors together in the column matrix

u =

(
u1

u2

)
.

We also introduce the column matrix f =
(
f1x f1y f2x f2y

)T where(
f1x
f1y

)
,

(
f2x
f2y

)
are the force vectors acting respectively on nodes 1 and 2 of the bar. If s denotes the force in the bar,
since in this model forces act longitudinally, either by compression (s < 0) or by tension (s > 0),
then the relation

f =

(
−e
e

)
s (5)

holds.

21

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

The elongation of the bar, δ, can be obtained as

δ = (u2 − u1)
Te =

(
−e
e

)T

u. (6)

By Hooke’s law we have that force and elongation are related through the relation

s = Dδ, (7)

where the stiffness is given by

D =
Ex

l
.

For later use, we introduce the stress σ, and the strain ε, of the bar, related in the following way

s = σx = Eεxj. (8)

Recall that the strain verifies ε = δ
l
. Inserting (6) and (7) into (5) we arrive at

f = D

(
−e
e

)(
−e
e

)T

u,

and if we call k0 to the matrix

k0 = D

(
−e
e

)(
−e
e

)T

=
E

l

(
e eT −e eT

−e eT e eT

)
(9)

and k(x) = xk0, then the equilibrium equations for the single bar are given by the linear system

k(x)u = f . (10)

The equilibrium equation for the whole truss structure is a linear system like (10), and the global
stiffness matrix is obtained by a procedure called assembly. In practice, for a truss structure, assembly
is actually very simple, and after a numeration of bars and nodes, we have just to sum over all bars the
elemental stiffness matrix k(x) in right positions into the global stiffness matrix K(x). In section 3.2
we show how this is computationally implemented. For the example of Figure 1, the equilibrium
equations can be computed by hand, and since we have six degrees of freedom for the displacements
the stiffness matrix will be an order six matrix (m = 6). In this case vector x ∈ R9, n = 9.
For examples on explicit computation on equilibrium equations for elementary trusses like this, and
simpler, we refer the interested readers to standard textbooks like [2].

Finally, we would like to remark that the global stiffness matrix K(x) is symmetric, which is
straightforward due to the fact that k(x) is symmetric and the way in which elemental matrices are
assembled (diagonal terms of elementary stiffness matrices sum on the diagonal terms of the global
stiffness matrix). Also, stiffness matrix is positive semidefinite. In order to show this, we have to
check that

UTK(x)U ≥ 0 (11)

22

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

for any displacement vector U and any design vector x ∈ Uad. An elementary computation shows
that

UTK(x)U =
n∑

j=1

uT
j k(xj)uj,

where xj and uj are respectively the cross section area and the displacement vector of the j-th bar of
the truss. Then, since k(x) is positive semidefinite for any x > 0, we conclude that (11) holds, or, in
other words, K(x) is positive semidefinitive. If the structure is properly fixed with suitable boundary
conditions, then the resulting global stiffness matrices will be positive definite. This can be shown
easily with the following physical argument. Let SEj be the j-th bar strain energy, given by

SEj =
1

2
σjεjlj, (12)

where σj and εj are, respectively, the j-bar stress and strain. Operating, and δj being the elongation
and ej the unitary director vector of the j-th bar, we have that

SEj =
1

2
Eε2jxjl =

1

2
E
δ2j
l2j
xjll =

1

2
E

[(
−ej
ej

)T

uj

]2

l2j
xjlj

=
1

2
uT
j

Exj

lj

(
−ej
ej

)(
−ej
ej

)T

uj =
1

2
uT
j kj(xj)uj

For later use, from the last identity, and using (8) and (12), the following equality

uT
j kj(xj)uj =

σ2
j

E
lj (13)

holds.
Then, the strain energy of the whole bar is

SE =
∑
j

SEj =
1

2
UTK(x)U.

Now if the boundary conditions avoid rigid motion then there cannot be a displacement different of
zero with zero strain energy, and this translates into mathematical terms by saying that K is positive
definite.

2.2 Mathematical analysis
Now we go into some mathematical questions on the optimal design problem. In order to do this, we
assume that the global stiffness matrix is positive definitive for any admissible design x. Then, for
any x ∈ Uad there exists a unique solution of the system

K(x)U = F, (14)

23

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

which we denote U(x). Then, the nested formulation of the problem is

min
x∈Uad

C(x) = FTU(x)

subject to
n∑

j=1

xjlj ≤ Vmax.

This is a non-linear programming problem. The constraints now are just the box constraints (those
defining the admissible set) and a linear constraint (the volume constraint). Existence of optimal
solutions can be shown in many ways, but for a finite dimensional problem like this, probably the
easiest one is just by realizing that the feasible set for the optimization problem, Uad is a compact
subset of Rn and that the cost functional, C, is continuous on this set.

For the numerical algorithm we will need the derivatives of the cost functional C with respect to
the design variables xj . This is obtain in a straightforward manner

∂C(x)

∂xj

= FT ∂U(x)

∂xj

= (K(x)U(x))T
∂U(x)

∂xj

= U(x)TK(x)
∂U(x)

∂xj

. (15)

If we now derive the state equation, we get
∂K(x)

∂xj

U(x) +K(x)
∂U(x)

∂xj

= 0,

and then
∂U(x)

∂xj

= −K(x)−1∂K(x)

∂xj

U(x). (16)

Finally, substituting (16) into (15) we find out
∂C(x)

∂xj

= −U(x)T
∂K(x)

∂xj

U(x).

The derivative of the stiffness matrix with respect to xj is very easy to obtain, since xj only appears in
K(x) multiplying elemental stiffness kj (in the positions where this elemental matrix occupies when
K(x) is assembled), so that

∂C(x)

∂xj

= −uT
j kjuj.

Recall that uj is the displacement vector of the j-th bar. In terms of strain and stress, and according
to (13), the derivative can be written as

∂C(x)

∂xj

= −
σ2
j lj

E
. (17)

We could go further in our analysis obtaining first-order optimality (sufficient) conditions for this
problem, like the Karusk-Kuhn-Tucker conditions (KKT). This problem can be shown to be convex,
and KKT become also necessary conditions, so any critical point verifying KKT is also an optimal
design. For the simple example of Figure 1 the optimal design could be obtained by hand, and after
a bit of tedious calculations, from the KKT conditions. To Rather to delve in these issues, the aim of
this paper is to get into the computational implementation of this simple, but real-world engineering,
optimization problem, so that we refer the interested readers in this more mathematical questions to
the books and accounts already referenced in the introduction of the paper.

24

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

P

Figure 4: Truss structure and loads for the examples

3 Implementation
We have used the Python language for the implementation. Although Python is still behind C/C++
in the (scientific) programming language usage statistics, it is one of the languages with the faster
spreading rate, a fact probably due to the combination of its simplicity, power and readability. Statis-
tics available at different sites1 show that it consistently ranks among the first five languages of choice
with respect to several criteria (and for some of them, it is ranked number one). Finally, the avail-
ability of several specialized libraries for optimization problems, makes it well suited for use in the
classroom. Also, there many interesting books on Mathematics with Python, as for example, [5].

We have divided our implementation in two parts. In the first one, we build a uniform truss struc-
ture with nodes and bars, and in the second one, we implement the code for the structural optimization.
We will show in the examples the user interface for setting up and solving a particular problem.

3.1 Creation of the truss structure
The relevant information in a truss structure is given by the coordinates of the nodes and the bars
connecting the nodes. To build a uniform structure as in Figure 4, we define a rectangle given by their
lower left and upper right corners, (each of them is a tuple of two elements for the coordinates), and
the number of nodes used in each direction (given by two integers); those are the parameters used in
the function meshtruss (see Listing 1). The function returns two arrays: one with the coordinates
of the nodes of the structure and the other one with the connecting bars.

In Listing 1, equally space nodes are created in the X and Y directions in lines 5–9. The nodes are
numbered from left to right and from top to bottom. Then, for each node, the bars given in Figure 5
are created in lines 10–16. Of course, this is not valid for nodes on the right or on the top sides of the
rectangle where only vertical or horizontal bars are necessary. That is done in line 17 (vertical) and
lines 19–20 (horizontal).

For example, the simple structure of Figure 6 corresponds to the following called:

>>> coord, connec = meshtruss((0,0), (1,1), 1, 1)

1See for example http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/ or
http://langpop.com

25

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

n1

n3

n2

n4

(a)

n1

n3

n2

n4

(b)

n1

n3

n2

n4

(c)

n1

n3

n2

n4

(d)

Figure 5: Creation of bars in a uniform structure

0

2

1

3

0

1
2

3
4

5

Figure 6: Basic structure

and the obtained arrays are:

>>> coord
array([[0., 0.],

[1., 0.],
[0., 1.],
[1., 1.]])

>>> connec
array([[0, 1],

[0, 2],
[0, 3],
[1, 2],
[1, 3],
[2, 3]])

so that [coord[i,0],coord[i,1]] are the coordinates of the i-th node and connec[j,0]
and connec[j,1] are the indexes of the nodes for the j-th bar ends.

3.2 Structure optimization
The main code for the structure optimization has been implemented through a function opttruss
(see Listing 2), which allows to solve the problem (1) using the method of moving asymptotes algo-
rithm (MMA) developed in [9], which needs that the user supplies the cost functional, the constraints
and their corresponding derivatives.

The entry parameters of this function are the structure information, given by the coordinates and
connections of the nodes and bars as it has been computed in section 3.1, and some additional in-
formation about the structure conditions: namely, the Young modulus of each bar, the nodes that are

26

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

(partially) fixed, the external forces acting on each node, and a parameter corresponding to the nor-
malization of Vmax in (3). There is also a default boolean parameter which establishes whether the
displacements in the structure must be plotted.

In Listing 2, the Young modulus of each bar (E) has to be defined through an array of length equal
to the number of bars, such that E[j] gives the Young modulus of the j-th bar. On the other hand,
freenode is a 2-dimensional array such that freenode[i,:] is a 2-length integer array which
determines the freedom of the i-th node in the directions X and Y : 0 if it is fixed, and 1 otherwise.
Similarly, F is a 2-dimensional array such that F[i,:] is the external force applied on the i-th node
(as a 2-length array with components X and Y). All those data has to be defined previously to the
function called.

In the function opttruss, lines 5–10 compute the number of bars (n) and the number of nodes
(m) which are obtained from the corresponding dimensions of connections and coordinates, and also
the unit vectors e for each bar (according to (4)), and the matrix from (9)

B =

(
e eT −e eT

−e eT e eT

)
.

Then, three local functions are defined, all of them depending on the same variable x, which
is the design vector of the cross section areas of all bars. The functions fobj and volume com-
pute the objective function and the volume constraint, respectively, along with their derivatives; and
drawtruss allows to draw the structure.

Finally, the optimization process is in lines 67–76, where we set up and solve the problem through
the function NLP of the module openopt (cf. [6]).2

The interface of the function NLP (line 75) is easy to use: it needs the cost functional and its
derivative (f and derf), and the constraints and their derivatives (constr and dconstr); all those
values have been obtained from the functions fobj and volume which are used through a lambda
function (lines 69–70). Note that the constraint has been normalized for a better performance of the
algorithm (line 71).

A starting point for the iterations (x0) is also required; we have chosen xj = 10−4, ∀j (line
74), and lower and upper bounds (xmin and xmax) according to the definition of the admissible set
Uad. A couple of optional parameters (the name of the problem and a parameter to control how often
iterations have to be printed) have also been used. The problem is solved using the MMA algorithm
(line 76).

Computing displacements

In order to solve the system (2), the function fobj perfoms the construction of the global stiffness
matrix of the structure (K) in lines 14–22. The assembly of the global stiffness matrix is done in line
22; this process is carried out by summing the elemental matrix k(x) in (10) (given by D[i]*k0, see
(15)) to the global matrix in the appropriate places, according to the right indexes (index).

Once the stiffness matrix has been built, the indexes associated to fixed displacements of nodes
have to be blocked, that is, taken out from the stiffness matrix and the external forces. The result are
the matrix matrix and the right hand side rhs, and then the system is solved (lines 24–27).

2We have chosen this module because it provides the MMA algorithm through the open library NLOPT ([4]).

27

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

Finally, the displacements (U) of the whole structure are obtained using the solution of the system
together with the zero value on the fixed nodes (lines 28–30).

Compliance and its derivative

Now, computing the compliance is straightforward (line 33), and its derivative (line 34) is easy using
(17), where s is a vector whose components are the forces acting on each bar (according to (7)).

Drawing results

Finally, we have implemented a function drawtruss for drawing the optimal structure and dis-
placements (optionally). We perform a loop over all the bars in the structure and built the original
bars (bar1) and the displaced bars (bar2); for the last one we have used the displacement and a
factor scale in order to highlight the figure. Also, we modify the linewidth parameter of plot
commands to emphasize the structure according to the cross section area (x) of each bar. The color
on the left hand side figure reflects whether the bar is working under tension (red) or compression
(blue).

4 Examples

4.1 Example 1
As we have seen in the previous section, in order to find an optimal truss structure we have to define
the Young modulus of each bar, loads in the nodes and fixed and free nodes, along to the structure
itself.

Listing 3 shows the user interface for setting up the problem for the structure of Figure 4. For
simplicity, we consider that all bars are made of the same material with constant Young modulus and
there is only one vertical load on the middle right side. Note that we need to know the right index
of the node (line 5). Also, we need to provide the index of nodes that are fixed; we first define all
the nodes as free (value equal to 1) and then put 0 in the indexes corresponding to the fixed ones
(line 7). Finally, we perform the optimization with 10% of the maximum volume allowed (line 8).
The terminal will show the following:

------------------------- OpenOpt 0.5306 -------------------------
solver: mma problem: Truss type: NLP goal: minimum
iter objFunVal log10(maxResidual)

0 8.194e+00 -100.00
100 3.195e-01 -100.00
179 3.179e-01 -100.00

istop: 1000
Solver: Time Elapsed = 5.86 CPU Time Elapsed = 5.85
objFunValue: 0.31792522 (feasible, MaxResidual = 0)

and Figure 7 the result.

28

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

Figure 7: Result of Example 1

(a) Result without node 16 (b) Result without bar 16–22

Figure 8: Example 2

Example 2
Finally, we show a second example where we explore how would affect to the optimal structure if we
delete some bars or nodes in the structure. As we have defined the truss structure through two arrays,
all we have to do is to implement a couple of functions to eliminate the bars we choose. Listing 4
shows those functions.

The functions are easy to use: remove_bar will remove the bar between nodes n1 and n2 from
the connec array, and remove_node will remove all the bars with origin or end in the given node.
Note that the node is not removed, so that it will have to be blocked in order to have a non-singular
matrix.

In the example above, we can try removing the node where diagonal bars cross each other (node
16). Listing 5 shows the code. We use the function remove_node to redefine the connections array
and fixed the node. The result is shown in Figure 8a. We can see how the structure is forced to create
parallel bars to replace the diagonal ones.

A similar situation occurs if we eliminate the bar from node 16 to 22 from the truss as we can see
in Listing 6. Figure 8b shows the optimal configuration. We see how the diagonal bar working under
compression remains unchanged, and the other diagonal bar is substituted by two parallel bars.

29

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

5 Codes
Listing 1: Function meshtruss: creation of a uniform truss structure

1 import numpy as np
2 def meshtruss(p1,p2,nx,ny):
3 nodes = []
4 bars = []
5 xx = np.linspace(p1[0],p2[0],nx+1)
6 yy = np.linspace(p1[1],p2[1],ny+1)
7 for y in yy:
8 for x in xx:
9 nodes.append([x,y])

10 for j in range(ny):
11 for i in range(nx):
12 n1 = i + j*(nx+1)
13 n2 = n1 + 1
14 n3 = n1 + nx + 1
15 n4 = n3 + 1
16 bars.extend([[n1,n2],[n1,n3],[n1,n4],[n2,n3]])
17 bars.append([n2,n4])
18 index = ny*(nx+1) + 1
19 for j in range(nx):
20 bars.append([index+j-1,index+j])
21 return np.array(nodes), np.array(bars)

Listing 2: Function opttruss: optimization of a truss structure
1 from openopt import NLP
2 from matplotlib.pyplot import figure,show
3

4 def opttruss(coord,connec,E,F,freenode,V0,plotdisp=False):
5 n = connec.shape[0]
6 m = coord.shape[0]
7 vectors = coord[connec[:,1],:] - coord[connec[:,0],:]
8 l = np.sqrt((vectors**2).sum(axis=1))
9 e = vectors.T/l

10 B = (e[np.newaxis] * e[:,np.newaxis]).T
11

12

13 def fobj(x):
14 D = E * x/l
15 kx = e * D
16 K = np.zeros((2*m, 2*m))
17 for i in range(n):
18 aux = 2*connec[i,:]
19 index = np.r_[aux[0]:aux[0]+2, aux[1]:aux[1]+2]
20 k0 = np.concatenate((np.concatenate((B[i],-B[i]),axis=1),

\
21 np.concatenate((-B[i],B[i]),axis=1))

,axis=0)

30

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

22 K[np.ix_(index,index)] = K[np.ix_(index,index)] + D[i] *
k0

23

24 block = freenode.flatten().nonzero()[0]
25 matrix = K[np.ix_(block,block)]
26 rhs = F.flatten()[block]
27 solution = np.linalg.solve(matrix,rhs)
28 u = freenode.astype(’float’).flatten()
29 u[block] = solution
30 U = u.reshape(m,2)
31 axial = ((U[connec[:,1],:] - U[connec[:,0],:]) * kx.T).sum(

axis=1)
32 stress = axial / x
33 cost = (U * F).sum()
34 dcost = -stress**2 / E * l
35 return cost, dcost, U, stress
36

37 def volume(x):
38 return (x * l).sum(), l
39

40 def drawtruss(x,factor=3, wdt=5e2):
41 U, stress = fobj(x)[2:]
42 newcoor = coord + factor*U
43 if plotdisp:
44 fig = figure(figsize=(12,6))
45 ax = fig.add_subplot(121)
46 bx = fig.add_subplot(122)
47 else:
48 fig = figure()
49 ax = fig.add_subplot(111)
50 for i in range(n):
51 bar1 = np.concatenate((coord[connec[i,0],:][np.newaxis],

coord[connec[i,1],:][np.newaxis]),axis=0)
52 bar2 = np.concatenate((newcoor[connec[i,0],:][np.newaxis

], newcoor[connec[i,1],:][np.newaxis]),axis=0)
53 if stress[i] > 0:
54 clr = ’r’
55 else:
56 clr = ’b’
57 ax.plot(bar1[:,0],bar1[:,1], color = clr, linewidth = wdt

* x[i])
58 ax.axis(’equal’)
59 ax.set_title(’Stress’)
60 if plotdisp:
61 bx.plot(bar1[:,0],bar1[:,1], ’r:’)
62 bx.plot(bar2[:,0],bar2[:,1], color = ’k’, linewidth=

wdt * x[i])
63 bx.axis(’equal’)
64 bx.set_title(’Displacement’)

31

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

65 show()
66

67 xmin = 1e-6 * np.ones(n)
68 xmax = 1e-2 * np.ones(n)
69 f = lambda x: fobj(x)[0]
70 derf = lambda x: fobj(x)[1]
71 totalvolume = volume(xmax)[0]
72 constr = lambda x: 1./totalvolume * volume(x)[0] - V0
73 dconstr= lambda x: 1./totalvolume * volume(x)[1]
74 x0 = 1e-4*np.ones(n)
75 problem = NLP(f,x0,df=derf,c=constr,dc=dconstr, lb=xmin, ub=xmax,

name=’Truss’, iprint=100)
76 result = problem.solve("mma")
77

78 drawtruss(result.xf)

Listing 3: User input for Example 1
1 coord, connec = meshtruss((0,0), (0.6,0.4), 6, 4)
2 E0=1e+7
3 E = E0*np.ones(connec.shape[0])
4 loads = np.zeros_like(coord)
5 loads[20,1] = -100.
6 free = np.ones_like(coord).astype(’int’)
7 free[::7,:]=0
8 opttruss(coord,connec,E,loads,free,0.1,True)

Listing 4: Additional functions for removing bars
1 def remove_bar (connec ,n1 ,n2):
2 bars = connec.tolist()
3 for bar in bars[:]:
4 if (bar[0] == n1 and bar[1] == n2) or (bar[0] == n2 and bar

[1] == n1):
5 bars.remove(bar)
6 return np.array(bars)
7 else:
8 print "There is no such bar"
9 return connec

10

11 def remove_node(connec, n1):
12 bars = connec.tolist()
13 for bar in bars[:]:
14 if bar[0] == n1 or bar[1] == n1:
15 bars.remove(bar)
16 return np.array(bars)

32

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

Listing 5: User input for Example 2, removing a node
1 coord, connec = meshtruss((0,0),(0.6,0.4),6,4)
2 connec = remove_node(connec,16)
3 E0=1e+7
4 E = E0*np.ones(connec.shape[0])
5 loads = np.zeros_like(coord)
6 loads[20,1] = -100.
7 free = np.ones_like(coord).astype(’int’)
8 free[16,:]=0
9 free[::7,:]=0

10 opttruss(coord,connec,E,loads,free,0.1)

Listing 6: User input for Example 2, removing a bar
1 coord, connec = meshtruss((0,0),(0.6,0.4),6,4)
2 connec = remove_bar(connec,16,22)
3 E0=1e+7
4 E = E0*np.ones(connec.shape[0])
5 loads = np.zeros_like(coord)
6 loads[20,1] = -100.
7 free = np.ones_like(coord).astype(’int’)
8 free[::7,:]=0
9 opttruss(coord,connec,E,loads,free,0.1)

Acknowledgements
This paper has been written after the authors taught two courses on Structural Optimization
and Scientific Computing with Python as part of the VI Joint School UVEG-USALP-UCLM
at the Facultad de Ciencias of the Universidad Autónoma de San Luis Potosı́ (Mexico) held in
June 2014. We kindly thank the invitation for teaching those courses and the kind hospitality of
the Departamento de Matemáticas of UASLP, and particularly we specially thank to Prof. José
Antonio Vallejo.

We also acknowledge support for our research activities from Ministerio de Ciencia e Inno-
vación (MICINN) in Spain through the grant MTM2010-19739 and we also thank the sugges-
tions of the anonymous referee which contributed to improve the manuscript.

References
[1] M.P. Bendsøe and O. Sigmund. Topology Optimization: theory, methods and applications.

Springer-Verlag, 2003.

[2] P.W. Christensen and A. Klarbring. An Introduction to Structural Optimization. Solid
Mechanics and Its Applications. Springer Netherlands, 2010.

[3] R.T. Haftka and Z. Gürdal. Elements of Structural Optimization. Contributions to Phe-
nomenology. Springer Netherlands, 1992.

[4] S.G. Johnson. The NLOPT nonlinear-optimization package, 2008.

33

The Electronic Journal of Mathematics and Technology, Volume 10, Number 1, ISSN 1933-2823

[5] Jaan Kiusalaas. Numerical methods in engineering with Python 3. Cambridge University
Press, Cambridge, 2013.

[6] Dmitrey Kroshko. OpenOpt: free scientific-engineering software for mathematical model-
ing and optimization, 2007.

[7] A.G.M. Michell. The limits of economy of material in frame-structures. Philosophical
Magazine Series 6, 8(47):589–597, 1904.

[8] W.R. Spillers and K.M. MacBain. Structural Optimization. Springer, 2009.

[9] Krister Svanberg. The method of moving asymptotesa new method for structural optimiza-
tion. International Journal for Numerical Methods in Engineering, 24(2):359–373, 1987.

34

	Introduction
	The optimization problem
	Equilibrium equations
	Mathematical analysis

	Implementation
	Creation of the truss structure
	Structure optimization

	Examples
	Example 1

	Codes

